
Autonomous Learning of Physical Environment
through Neural Tree Search

Bowen Fang
IEOR Department

Columbia University
UNI: bf2504

Abstract—The problem of active simultaneous localization and
mapping (SLAM) is an important and challenging problem in
the field of autonomous operations. The task involves actively
guiding the agent to explore an unknown environment and build
a map of the environment while localize the agent within that
environment. Although several recent works have showcased
the capacities of reinforcement learning(RL) method and the
success of active slam based on RGB sensor, there is a lack
of model-based method that has planning ability. Monte carlo
tree search(MCTS)-based reinforcement learning has been shown
to be highly effective on tasks where planning is required.
However, due to its root in board games, most open source system
follows the design of board game AI, which presents non-trivial
difficulties to extend to wider range of reinforcement learning
tasks. To enrich the toolkit of RL researchers and practitioners,
in this project I present a new open source library Muax, a
flexible and modular toolkit for mcts-based RL. I also proposed a
Neural Tree Search(NTS) method for acitve SLAM, where a novel
search process and a new loss function are used. Comparison
experiments on Gibson exploration tasks are conducted through
Habitat platform. The proposed method realized competitive
performance against the state-of-the-art method Neural-SLAM
with significant less training times, demonstrating the efficiency
of the model-based method.

Index Terms—intelligent robots, learning control systems, pre-
dictive control

I. INTRODUCTION

Image you were a new student in Columbia and were asked
to go to Mudd. How would you find the way? Probably
as most people do, you will need a map. And if you have
a map with your location within it, it’s even better. It is
kind of similar for the robotic tasks, where autonomous
operations requires the agent to have access to a consistent
model of the surrounding environment. To have a map with
one’s location is about localization and mapping, which are
correlated and dependent of one another. Previous works focus
on incrementally building the map of the environment while
at the same time locating the robot within it, which is referred
to as SLAM. Moreover, different strategies can be applied to
guide the robot to explore the unknown environment, which
are gaining increasing attention [1]. The rapid advances in
deep learning and more RL friendly simulators have stimulated
the deep reinforcement learning (DRL) research interest in
active SLAM. Several works [2], [3] also demonstrate the
success of introducing DRL into embodied AI tasks.

However, the current DRL for active SLAM has their focus
on model-free algorithms, which is lack of planning abilities

Fig. 1. Neural Tree Search on Gibson exploration task

and is less efficient compared to model-based ones. And the
recent progress of MuZero [4] has tackled the difficulties
that other model-based algorithms have when solving Atari
Games, to outperform the state-of-the-art result from model-
free algorithm and establish a new one. Despite the growing
interest in the mcts-based algorithms, implementing these
algorithms and adapting them to specific tasks remains a
challenging endeavor. For instance, there are plenty of rein-
forcement learning libraries such as stable-baselines [5], rllib
[6], ElegantRL [7] and etc. However, none of these libraries
support mcts-based algorithms, though MuZero could have
already been similar as model-free algorithms in the pipeline.
Meanwhile, the current most widely used MuZero implemen-
tation EfficientZero [8] suffer from extending the algorithm
to customized loss design, customized neural networks design
and extending the experiments to different gym environments
with ease.

To address these challenges, in this report, I present a
modular and extendable library for mcts-based deep rein-
forcement learning, named muax. Muax aims to provide a
user-friendly toolkit for deployment and testing of mcts-based
algorithms. By focusing on modularity and extensibility, the
library allows users to easily adapt various components of the
reinforcement learning pipeline to suit their specific needs.
To enable users to train and evaluate their models on a wide
range of tasks with minimal effort, Muax is designed to be
compatible with Gym environments, which is the mostly used
RL environments. Further, a model-based method Neural Tree
Search(NTS) has been proposed to solve active SLAM. The



model uses ResNet [9] as backbone and follows the search
process as MuZero, while introduces a SLAM module, which
decodes the predicted map from the hidden state for path
planning. A corresponding loss function is proposed to train
the NTS model.

II. RELATED WORK

In recent years, the active SLAM has caught increasing
attention [1]. This is due to the rapid advances in deep learn-
ing (DL), which creates new opportunities for using neural
networks to solve navigation and active SLAM tasks [10]
[2] [11]. Second, more reinforcement learning (RL) friendly
simulators [12] [13] are published, which provide powerful
tools for researchers to test their idea on different tasks with
different baseline models. Further, the availability of open
source benchmark datasets [14] [15] [16] from cameras (RGB
images) and odometry sensors have further fueled the interest
in this area.

The survey [1] has outlined the current state of the art
in active SLAM and has it focus on recent advances in
deep learning and reinforcement learning methods. Placed
[1] also identified some of the key challenges and potentials
corresponding to the deep learning methods. They have also
discussed the limitations of existing approaches and identified
areas for further research and development.

Chen et al. 2019 [2] and Chaplot et al. 2019 [11] both
developed Deep Reinforcement Learning(DRL) methods for
active SLAM based on visual inputs. Chen’s approach uses
imitation learning and is trained end-to-end, while Chap-
lot’s approach uses hierarchical learning to achieve better
performance. They both use PPO to train the model. Their
experiments were conducted on the Habitat platform [13].
Furthermore, Chaplot’s method was the winning entry of the
CVPR 2019 Habitat PointGoal Navigation Challenge. Their
experiments demonstrate the potential of using RL for active
SLAM and show the advantages of using visual inputs in
combination with deep learning algorithms.

The work of Chen and Chaplot show the possibility to
develop a deep learning approach for active SLAM that is
based on visual inputs. And more efficient learning or search
method could strengthen the performance.

The model-based RL algorithm MuZero [4] has gained
considerable attention due to its ability to learn strong policies
without access to an explicit environment model, unlike its
ancestors AlphaGo [17] and AlphaZero [18]. MuZero has
also outperformed the state-of-the-art result from model-free
algorithm and establish a new one. Further, MuZero has been
evolving to tackle more complex action space and environ-
ment. Sampled MuZero [19] extends the original discrete
action space to more complex action space, such as continuous
action space. Stochastic MuZero [20] , on the other hand,
improved the performance of MuZero on environment that
is inherently stochastic. In summary, MuZero has shown its
strong planning ability in not only board games, but also more
general tasks.

III. DATA

Habitat platform [13] provides support to do the simulation
with various datasets. Habitat platform also provided several
baseline tasks for the robot to solve. The data that are used
throughout the project are Gibson [14]. The Gibson dataset
provides large-scale, photorealistic environments for testing
autonomous agents. It includes a variety of indoor and outdoor
environments, making it a suitable dataset for evaluating
models in a wide range of scenarios. The exploration task
is performed, where the agent is required to navigate in an
unfamiliar environment and the goal is to explore as much
space as possible with the least time spent. The task datasets
are available on the Habitat’s repository, while the Gibson
scene data require the permission from the official website.

The size of the datasets are summarized
To process the data and set up the environment, Further-

more, it takes around half an hour to set up the necessary
environment each time on Colab, so the platform for devel-
oping the program is changed to an VM with 1 Nvidia T4
GPU. Another difficulty to handle is the licence for using
the scene datasets. Different from the task datasets which can
be downloaded directly from the Habitat simulator, the scene
datasets Gibson and MatterPort3D all have to be downloaded
from official website after the user signing agreement to get the
licenses. Therefore, it takes some time to access the data. Once
the datasets have been downloaded, it is required to follow the
instruction to format the dataset as table I shows.

The licenses for referenced dataset:
Gibson: svl.stanford.edu/gibson2/assets/GDS_agreement.pdf

TABLE I
THE SIZE OF THE DATASETS

Dataset name Size Require permission
Gibson Scene 11GB Yes
Gibson Point Goal Navigation task 385MB No

IV. METHOD

The proposed Neural Tree Search is based on MuZero [4]
, which uses Monte Carlo Tree Search(MCTS) as its search
algorithm and directly learns a model for environment dy-
namic from interaction with the unknown environment during
simulation. Further, it is a scalable model which was first used
on board games and reached the same performance level as
AlphaZero. At the same time, it is also capable to play Atari
games, which is considered to be hard for AlphaZero and
model-based algorithms, at the state-of-the-art level.

The model uses a loss function to minimize the error
between predicted and actual bootstrapping value of a state,
the action logits with searched action logits and the estimated
reward and the actual reward. The canonical model does not
explicitly includes the error from the estimated state and the
actual state. Thus, the model is focus on planning, while
learns a model that provides only information related to the
planning. However, the procedure of MuZero fits well with
the active SLAM problem settings. So I proposed a modified



Fig. 2. One iteration of the general MCTS approach. [21]

MuZero algorithm, named Neural Tree Search to explicitly add
“SLAM error” to solve the localization, mapping and planning
problems.

A. Modeling: MCTS

Algorithm 1 Algorithm for MCTS
procedure MCTSSEARCH(s0)

create root node v0 with state s0
while within computational budget do

vl ← TREEPOLICY (v0)
∆← DEFAULTPOLICY (s(vl))
BACKUP (vl,∆)

end while
return a(BESTCHILD(v0))

end procedure

Monte Carlo Tree Search (MCTS) is a search algorithm used
in decision-making problems, particularly in game-playing
scenarios. It is based on the principle of Monte Carlo sim-
ulations, where possible actions are randomly sampled and
played out multiple times to determine the best one.

MCTS operates by building a tree of possible actions and
their outcomes. It starts with a single root node representing
the current game state and expands the tree by adding child
nodes that represent possible actions from the current state.
The algorithm then simulates a number of playouts from
each child node by randomly selecting actions until the end
of the game is reached, resulting in a score or reward for
each playout. Once the playouts are completed, the algorithm
updates the scores of the nodes in the tree, backpropagating
the results from the leaves to the root node. The update rule
is typically based on the average or maximum score of the
playouts, and may include exploration bonuses to encourage
the algorithm to try new actions.

The process of selection, expansion, simulation, and back-
propagation is repeated for a fixed number of iterations or
until a time limit is reached. After the search is complete, the
algorithm chooses the action that leads to the most promising
child node, based on the scores and visit counts stored in the
tree.

MCTS has been used successfully in a variety of game-
playing scenarios, including Go, Chess, and Poker, where
it has achieved state-of-the-art performance. It is also used
in other decision-making problems, such as robotics and
scheduling. [21]

B. Modeling: MuZero Search1

The search algorithm used by MuZero is based upon Monte-
Carlo tree search with upper confidence bounds(UCB), an
approach to planning that converges asymptotically to the
optimal policy in single agent domains [4].

Every node of the search tree is associated with
an internal state s. For each action a from s there
is an edge (s, a) that stores a set of statistics
{N(s, a), Q(s, a), P (s, a), R(s, a), S(s, a)}, respectively
representing visit counts N, mean value Q, policy P, reward
R, and state transition S. The search is divided into three
stages, repeated for a number of simulations.

Selection: Each simulation starts from the internal root state
s0, and finishes when the simulation reaches a leaf node sl.
For each hypothetical timestep k = 1...l of the simulation,
an action ak is selected according to the stored statistics for
internal state sk−1, by maximizing over an upper confidence
bound,

ak = argmax
a

[Q(s, a)+

P (s, a)

√∑
b N(s, b)

1 +N(s, a)
(c1 + log(

∑
b N(s, b) + c2 + 1

c2
)]

1This section is based on MuZero paper [4]’s Appendix B



Where c1 and c2 are used to control the influence of the prior
P (s, a) relative to the value Q(s, a) as nodes are visited more
often. In the experiments, c1 = 1.25 and c2 = 19652. For k <
l, the next state and reward are looked up in the state transition
and reward table sk = S(sk−1, ak), rk = R(sk−1, ak).

Expansion: At the final timestep l of the simulation, the
reward and state are computed by the dynamics function,
rl, sl = gΘ(s

l−1, al), and stored in the corresponding tables,
R(sl−1, al) = rl, S(sl−1, al) = sl. The policy and value are
computed by the prediction function, pl, vl = fΘ(s

l). A new
node, corresponding to state sl is added to the search tree.
Each edge (sl, a) from the newly expanded node is initialized
to {N(sl, a) = 0, Q(sl, a) = 0, P (sl, a) = pl}. The search
algorithm makes at most one call to the dynamics function
and prediction function respectively per simulation.

Backup: At the end of the simulation, the statistics along
the trajectory are updated. The backup is generalized to the
case where the environment can emit intermediate rewards,
have a discount γ. For k = l...0, the backup forms an l−k-step
estimate of the cumulative discounted reward, bootstrapping
from the value function vl,

Gk =

l−1−k∑
τ=0

γτrk+1+τ + γl−kvl

Where for k = l...1, updates the statistics for each edge
(sk−1, ak) in the simulation path:

Q(sk−1, ak) :=
N(sk−1, ak)Q(sk−1, ak) +Gk

N(sk−1, ak) + 1

N(sk−1, ak) := N(sk−1, ak) + 1

C. Proposed model: Neural Tree Search

The proposed model is named Neural Tree Search(NTS),
whose planning and training process is shown as Fig.5. NTS
follows the procedure of MuZero, while includes a SLAM
module for learning the environment. At each timestep t, NTS
runs MCTS simulation and predicts the map mk

t , the location
lkt , the policy pkt , the value vkt for k = 1, ..,K. NTS consists
of four parts, representation, prediction, dynamics and SLAM.
The representation module is called at the beginning to encode
the raw observation into the hidden state, which are then used
for MCTS. Inside the MCTS search tree, the dynamics of the
environment is represented by the dynamics module, which
takes the hidden state and the candidate action recurrently
as rk, sk = g(sk−1, ak), to simulate one hypothetical envi-
ronment step given the action ak, and estimated the reward
rk for the move. It mirrors the structure of an MDP model
that computes the expected reward and state transition for a
given state and action [23]. Yet in the MuZero, hidden state
sk has no semantics of the actual environment. The SLAM
module decodes the hidden state to generate the predicted map
and location as mk, lk = q(sk), which realizes the mapping
from sensor output to the map of physical environment. The
policy and value are computed from the internal state sk by the
prediction module, pk, vk = f(sk), which are then used for

MCTS simulation. The MCTS outputs a recommended policy
πt and estimated value vt. An action at+1 πt is then selected.
All parameters of the four modules are trained jointly to match
the predicted quantities from every hypothetical step k, to the
observations for k actual timesteps.

lt(θ) =

K∑
k=0

lr(ut+k, r
k
t ) + lv(zt+k, v

k
t ) + lp(πt+k, p

k
t )

+ lmap(dt+k,m
k
t ) + lpose(et+k, l

k
t ) + c||θ||2

where lr, lv, lp, lmap, lpose are loss functions for reward, value,
policy, map, location, respectively.

1) Neural Network for NTS: Fig.3 and fig.4 display the
neural networks used by the four modules of NTS. The repre-
sentation module takes the RGB images as input, which have
a resolution of 256x256, with 3 channels. The three channels
are rescaled to the range [0,1]. Since the RGB observations
have large spatial resolution, the representation module uses
a sequence of convolutions with stride 2 to reduce the spatial
resolution. The output is the hidden state of resolution 16x16,
64 channels.

For the prediction module, the policy head and value head
preserved the spatial resolution while changes the number of
channels, followed by linear layers to map the size of the
output to the number of actions and support size, respectively.

The SLAM module takes the hidden state as the input and
performs deconvolution to generate a decoded state that has
the same resolution of the ground truth map, while at the
same reduces the number of channels to 2, one represents the
predicted map, the other one represents the explored area. The
decoded state is then fed into pose estimator, which outputs
the location by convolutions and fully connected layers.

The dynamics module first encodes the action into a single
panel of the same resolution as the hidden state(16x16) and
rescaled to the range [0,1]. The panel is then appended to the
hidden state, and passes through 8 Residual Blocks to generate
the next hidden state of the same shape.

To improve the stability of the process, the hidden state is
scaled to the range [0, 1] at each step. The loss is multiplied
by 1

K , to ensure that the unroll step size has no effect on the
magnitude of total gradient. And the gradient scaled down by
1
2 at the start of the dynamic function to ensure that the total
gradient applied to dynamic module remain constant.

The kernel size is 3x3 for all convolution operations.

V. SYSTEM

To support the research, a comprehensive system is pro-
posed that includes the following components, Data Source,
Simulation, ML Pipeline and Visualization. An overview of
the Neural Tree Search system is visualized by Fig.6.

The datasets I will use is the Gibson scene and task dataset,
which provide a rich and diverse range of room environments
for evaluating the approach.

The simulation environment is based on the Habitat plat-
form, which provides a realistic and controlled environment



Fig. 3. The neural networks employed in NTS for planning.

Fig. 4. The neural networks employed in NTS for SLAM.

for testing and evaluating agents and allows researchers to
conduct experiments in a repeatable and reliable manner.

As for modeling, I will use Jax framework and the proposed
Muax library.

Front-end tools will be used to analyze the results and to
present the main findings in a clear and accessible manner.

In summary, the system provides a comprehensive and end-
to-end solution for training and evaluating DRL approaches
for active SLAM.

A. Muax2

Muax is implemented as separate to Neural Tree Search
for the reason that the lack of flexible tools and the in-
herent complexity of mcts-based algorithms often impede
researchers’ and practitioners’ ability to customize, extend,
and deploy these methods in new domains. Therefore, muax is
presented to provide a user-friendly toolkit for deployment and
testing of mcts-based algorithms. In the following subsection,
I will describe the design of Muax, highlight its key features
and show how users can use and extend Muax for neural
tree search research. I present several extensible examples
that showcase the versatility of the framework in addressing
different reinforcement learning tasks, from classic control
problems to more complex, high-dimensional environments.
I also created several example notebooks and tutorials in
this open source project to make Muax functionalities clear
for beginners and showcase how Muax can be extended and
customized.

Muax is built around the principles of modularity, exten-
sibility, and usability. To facilitate these principles, Muax
decomposes the components in the MuZero algorithm and
implements entire reinforcement learning pipeline. Fig.7 is a
high-level overview of Muax system. There are 10 compo-

2Muax is available at https://github.com/bwfbowen/muax



Fig. 5. An overview of NTS planning and training process. (A) shows how NTS uses its model to plan. The model consists of four connected components
for representation, dynamics, prediction and SLAM. The initial hidden state s0 is the output of representation module h, whose input is the raw observations,
for instance, an RGB image of the room to be explored. For each hidden state sk , the policy pk and value vk are predicted by the prediction module f and
the predicted map mk and predicted location lk( in the predicted map) are gathered from SLAM module. Then, Given a hidden state sk−1 and a candidate
action ak , the dynamics module g produces an immediate reward rk and a new hidden state sk . (B) shows how NTS is trained. For one sub trajectory
sampled from replay buffer, the representation module h generates the initial hidden state s0 from the past observations ot from the first timestep of the
sampled trajectory. The model is subsequently unrolled recurrently for K steps. At each step k, five pairs of quantities are predicted to calculate the loss,
namely the predicted policy pk with the action probability from the root node πt+k , the preidcted value vk with the n-step bootstrapping value zt+k , the
predicted reward rk with the actual reward received ut+k , the predicted map mk with the ground truth map dt+k , the predicted location lk with the actual
location et+k . Then the dynamics module g receives as input the hidden state sk−1 from the previous step and the real action at+k , to generate the next
hidden state sk . Four modules are jointly trained.

nents, which can be divided into 3 groups, namely model,
training/testing and environment.

Model: Muax decomposes the MuZero algorithm into tree
search policy, neural network and optimizer.

a. Model class: This class serves as the primary interface
as reinforcement learning agent does, which interacts with
the environment. It is responsible for managing the model’s
representation, prediction, and dynamics functions and their
parameters, as well as the optimizer and the optimization
process. Model class also controls which tree search policy
to use. Users can customize the model by providing their own
implementation of each functions or using the default ones
provided by the framework.

b. Tree search policy: Muax uses mctx [22] as tree search
policy. Through model class interface, the user specifies which
policy to use. The tree search by mctx is fully compiled just-
in-time and runs in parallel, making the process very efficient.

c. Neural network: Muax uses haiku to build neural net-
works. The networks are used for Representation, Prediction,
and Dynamic classes. These classes are used to build the major
functions for tree search policies. As the name suggested,

Representation is for encoding the raw observation into hidden
state, Prediction is for evaluating the state and generates the
prior action logits and Dynamic is for transferring the hidden
state into the next state and calculates the reward associated
with the transfer. By separating these functions, Muax pro-
motes modularity and simplifies the process of customizing
the model.

d. Optimizer: Muax uses optax to build optimizer. The
loss function can be provided through Model class interface.
Therefore, Muax makes it easy to design and experiment with
customized loss.

Training/Testing: Muax employs a flexible training and
testing loop. The main training loop is implemented in the fit
function, which takes care of environment interaction, model
training, and performance monitoring. Users can customize
the training loop by providing their own implementation.
Meanwhile, the testing loop is a simple interaction with the
environment with trained model. The training and testing loop
are both close to the typical loop for model-free algorithms,
which makes it easy for RL practitioners to get started.

a. Episoder Tracer: This module is responsible for tem-



Fig. 6. An overview of Neural Tree Search system structure

Fig. 7. Overview of Muax architecture

porarily handling step-wise data collected through interaction
with the environment. The NStep and PNStep classes calculate
the n-step bootstrapping and prioritized weight, respectively.
Users can customize the behavior of these components to suit
their specific requirements.

b. Trajectory Replay Buffer: This module is responsible
for handling trajectories’ data. The ReplayBuffer class stores
the collected data and provides the interface for sampling data.

Environment: Muax is designed to be compatible with
Gym environments, allowing users to train and evaluate their
models on a wide range of tasks. The framework provides util-
ity functions for easily wrapping Gym environments, enabling
seamless integration with the training loop. Additionally, Muax
will support the use of vectorized environments for more
efficient training and evaluation.

Any implementations that are compliant with the interfaces
defined by Muax can be seamlessly integrated.

1) Extending Muax: Muax is designed to be flexible and
extensible, allowing users to adapt the framework to various
reinforcement learning tasks and requirements easily. With
Muax it is possible to explore more effective neural networks,
test novel loss functions, and experiment with customized
environments. The customized modules can be integrated into
Muax seamlessly if the interfaces are properly implemented.

Customize Model Components: Users can implement cus-
tomized components, for instance, representation, prediction,

and dynamic functions by extending the corresponding base
classes from the muax.nn module and providing their own
implementation for the __call__ method. This enables users
to create custom models with different architectures.

from muax . nn import ( R e p r e s e n t a t i o n ,
P r e d i c t i o n ,
Dynamic )

c l a s s CustomRepr ( R e p r e s e n t a t i o n ) :
def _ _ c a l l _ _ ( s e l f , x ) :

# Implemen t cus tom method
re turn o u t

c l a s s CustomPred ( P r e d i c t i o n ) :
def _ _ c a l l _ _ ( s e l f , x ) :

# Implemen t cus tom method
re turn o u t

c l a s s CustomDynamic ( Dynamic ) :
def _ _ c a l l _ _ ( s e l f , x , a ) :

# Implemen t cus tom method
re turn o u t

Customize Loss Function: The loss function plays an
important role in algorithm training. Some work [8] obtains
better performance through loss function designs. Suppose we
want to use a custom loss function for training the model. We
can achieve this by defining a new loss function and passing
it to the MuZero class as an argument.

def c u s t o m _ l o s s _ f n ( model ,
ba tch ,
params ) :

# Compute t h e cus tom l o s s
# based on t h e model , ba tch ,
# and p a r a m e t e r s
# . . .
re turn c u s t o m _ l o s s

model = muax . MuZero (
. . . ,
l o s s _ f n = c u s t o m _ l o s s _ f n
)

Customize Environments and Wrappers: To use custom
environments or apply additional functionality to existing en-
vironments, users can create their own environment classes by
extending the gym.Env class and implementing the required
methods step() and reset(). Additionally, users can also
create custom wrappers to modify the behavior of existing
environments.

import gymnasium as gym

c l a s s CustomEnvironment ( gym . Env ) :
def _ _ i n i t _ _ ( s e l f ) :

# I n i t i a l i z e t h e cus tom



# e n v i r o n m e n t
pass

def s t e p ( s e l f , a c t i o n ) :
# Implemen t t h e cus tom
# s t e p l o g i c
re turn obs , reward , done , i n f o

def r e s e t ( s e l f ) :
# Implemen t t h e cus tom
# r e s e t l o g i c
re turn i n i t _ o b s , i n f o

These extension mechanisms empower users to easily adapt
Muax to address various reinforcement learning tasks and
requirements, facilitating the development of customized al-
gorithms and techniques.

VI. EXPERIMENT

In this section, I performed comparison experiments on
Gibson exploration task against Neural SLAM [3]. Therefore,
I used the same task setup. The reward is defined as the
exploration ratio of the entire room. The observation is the
RGB images from the visual sensor, and the pose from the
motion sensor. However, Neural Tree Search is an end-to-
end model and is different from Neural SLAM. So there are
differences in particular settings.

A. Experiment Settings

The action for NTS is defined as the location on the
predicted map. By the use of analytical path planner(Fast
Marching Method [24]), which takes pose, map and goal as
input to calculate the robot action sequence, it is able to guide
the model in the actual environment. Therefore, the robot
maintains a predicted map, and by continuously specifying
a position in this map, with the analytical path planner, the
model guides the robot to explore the environment. The key
to successfully explore the unknown environment is whether
the predicted map and location matches the ground truth.
Otherwise, the robot action sequence calculated from FMM
would lead the robot to undesired place. The parameters for
the Gibson scene and robot is the same as Neural SLAM,
while two different action settings are tested. The 4x4 action
represents equally dividing the map into 16 grids, and each
action is mapped to the center of each grid. 10x10 results in
100 grids, which enable the robot to have more directions to
choose. More parameters are listed in table.II

B. Results

The result is presented as in III and 8. NTS 10 realizes com-
petitive performance to Neural SLAM with 30 episodes, the
latter requires over 70 episodes and vectorized environment,
which demonstrates the efficiency of NTS and the gain from
planning. However, NTS 4 is not comparable to NTS 10 and
Neural SLAM, and has higher variance. One possible reason
is that the robot is blocked by some obstacle and unable to
make small adjustment. For example, entering a door.

Fig. 8. Comparison of NTS with different action size.

TABLE II
THE PARAMETERS FOR EXPERIMENTS

Parameters Value
Max Episode Length 1000
Number of episodes 30
Environment Frame Width 256
Environment Frame Height 256
Camera Height 1.25
Frame Height 128
Frame Width 128
Vision Range 64
Number of Local Steps 25
Number of Global Steps 2
Number of Simulations 30
Number of Trajectories 4
Sample per Trajectory 16
K steps 5
N bootstrapping 10
Action Width 4, 10
Action Height 4, 10

Further, pose estimation error accumulates in the long
run, when the robot is happened to be blocked for a long
time, the predicted map could be far from correct. Therefore,
localization needs to be improved.

TABLE III
THE PERFORMANCE COMPARISON

Gibson Val
Method Cov.
Neural Tree Search 4 0.804
Active Neural SLAM 0.948
Neural Tree Search 10 0.952

VII. CONCLUSION

In this project, I proposed an open source mcts-based
reinforcement learning library and proposed a model-based
algorithm for solving active SLAM tasks. I have also con-
ducted experiments on Habitat simulation platform with Gib-
son dataset.



As for the mcts-based library muax, I have implemented ten
connected modules, which enable the general pipeline for RL.
Three different backbones, from MLP, ResNet to EfficientZero
architecture are also implemented, with two examples for
demonstrating the usage of muax being included. Moreover,
the key functions are JIT-able, which further improves the
efficiency of the tree search process.

As for the active SLAM, I have proposed the model Nerual
Tree Search for exploring the unknown environment with
planning. By introducing SLAM module, the robot is able
to learn not only the dynamics of the environment, but also
builds the map from exploration. Competitive performance is
obtained compared to previous works with less training time.



REFERENCES

[1] Placed, Julio A., et al. "A survey on active simultaneous localization
and mapping: State of the art and new frontiers." IEEE Transactions on
Robotics (2023).

[2] Chen, Tao, Saurabh Gupta, and Abhinav Gupta. "Learning exploration
policies for navigation." arXiv preprint arXiv:1903.01959 (2019).

[3] Chaplot, Devendra Singh, et al. "Learning to explore using active neural
slam." arXiv preprint arXiv:2004.05155 (2020).

[4] Schrittwieser, Julian, et al. "Mastering atari, go, chess and shogi by
planning with a learned model." Nature 588.7839 (2020): 604-609.

[5] Raffin, Antonin, et al. "Stable-baselines3: Reliable reinforcement learn-
ing implementations." The Journal of Machine Learning Research 22.1
(2021): 12348-12355.

[6] Liang, Eric, et al. "RLlib: Abstractions for distributed reinforcement
learning." International Conference on Machine Learning. PMLR, 2018.

[7] Liu, Xiao-Yang, et al. "ElegantRL-Podracer: Scalable and elastic li-
brary for cloud-native deep reinforcement learning." arXiv preprint
arXiv:2112.05923 (2021).

[8] Ye, Weirui, et al. "Mastering atari games with limited data." Advances
in Neural Information Processing Systems 34 (2021): 25476-25488.

[9] He, Kaiming, et al. "Deep residual learning for image recognition."
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016.

[10] Mirowski, Piotr, et al. "Learning to navigate in complex environments."
arXiv preprint arXiv:1611.03673 (2016).

[11] Chaplot, Devendra Singh, et al. "Neural topological slam for visual
navigation." Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020.

[12] Beattie, Charles, et al. "Deepmind lab." arXiv preprint arXiv:1612.03801
(2016).

[13] Savva, Manolis, et al. "Habitat: A platform for embodied ai research."
Proceedings of the IEEE/CVF international conference on computer
vision. 2019.

[14] Xia, Fei, et al. "Gibson env: Real-world perception for embodied
agents." Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018.

[15] Chang, Angel, et al. "Matterport3d: Learning from rgb-d data in indoor
environments." arXiv preprint arXiv:1709.06158 (2017).

[16] Ramakrishnan, Santhosh K., et al. "Habitat-matterport 3d dataset
(hm3d): 1000 large-scale 3d environments for embodied ai." arXiv
preprint arXiv:2109.08238 (2021).

[17] Silver, David, et al. "Mastering the game of Go with deep neural
networks and tree search." nature 529.7587 (2016): 484-489.

[18] Silver, David, et al. "Mastering chess and shogi by self-play with a gen-
eral reinforcement learning algorithm." arXiv preprint arXiv:1712.01815
(2017).

[19] Hubert, Thomas, et al. "Learning and planning in complex action
spaces." International Conference on Machine Learning. PMLR, 2021.

[20] Antonoglou, Ioannis, et al. "Planning in stochastic environments with a
learned model." International Conference on Learning Representations.
2021.

[21] Browne, Cameron B., et al. "A survey of monte carlo tree search
methods." IEEE Transactions on Computational Intelligence and AI in
games 4.1 (2012): 1-43.

[22] Danihelka, Ivo, et al. "Policy improvement by planning with Gumbel."
International Conference on Learning Representations. 2022.

[23] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., New York, NY, USA,
1st edition, 1994.

[24] Sethian, James A. "A fast marching level set method for monotonically
advancing fronts." Proceedings of the National Academy of Sciences
93.4 (1996): 1591-1595.


