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Abstract

Blockchain-based cryptocurrencies have been one of the
most attractive techniques in recent years. We set our sights
on Ethereum, which is one of the most popular blockchains.
Ethereum finalized ‘The Merge’ on September 15th, 2022,
upgraded from the original PoW (proof of work) mechanism
to PoS (proof of stake). Our goal is to analyze this big event
for Ethereum through descriptive and predictive analysis.
The novelty of our work comes from the fact that few previ-
ous works predict gas price through graph-based methods,
and few provide data analysis of ‘The Merge’. Our project
will be useful to researchers, data scientists in Ethereum
blockchain analysis.

1. Introduction

The Merge aimed to resolve the disadvantages of ETH
1.0 of low scalability and high energy consumption. By
merging the PoS Beacon Chain to the main chain, the
Merge reduced about 99.95% Ethereum’s energy consump-
tion. Our goal is to analyze this big event for Ethereum. We
carry out descriptive analysis comparing data before and af-
ter the Merge. As for application, we present a GNN model
based on the embedding of transaction networks. We are in-
terested in the Gas Price, which is of great economic value,
and ‘The Merge’ takes one step closer to sharding, which
will increase the processing speed of the Ethereum mainnet
and lower the transaction fees. The challenge we estimate
we might have is that the Ethereum transaction network is
heterogeneous and evolves temporally with high velocity.

We’re applying both descriptive and predictive methods.
First, we try to conduct descriptive and also comparative
analysis on transaction graphs. After constructing transac-
tion networks before and after “The Merge”, we will com-
pare network metrics, including global metrics like density
and centralization, local metrics like cliques, and individual
metrics like degree. Based on the comparison results, we
will conduct visualization to discern patterns before and af-

ter “The Merge.” For example, “The Merge” promotes the
decentralization of transactions, which was the original in-
tention of blockchain. Also, will “The Merge” bring about
potential inflation of cryptocurrency and behavior shifts of
users. These are the questions we are interested in.

In addition, we would like to conduct predictive analy-
sis on gas price, which is a key indicator of a transaction
and the key part to build advantages for users. Based on
prior works, we intend to combine temporal and graphical
information to improve prediction performance. To be spe-
cific, based on attention mechanisms, we apply graph atten-
tion convolution (GATConv) and global pooling to obtain
embeddings of the entire graph, and causal Transformer to
learn temporal dependencies.

2. Related work

Based on the large and heterogeneous data, there is
a considerable amount of research on graph analysis of
Ethereum. These studies focus on either descriptive or pre-
dictive questions that rely on graph-structured data to rep-
resent and solve.

In terms of descriptive analysis, representative studies
include Motamed and Bahrak’s [6] horizontal comparison
of the nodes’ and edges’ scale in Ethereum’s transaction
graph with other platforms like Bitcoin, Litecoin, and Dash.
Guo et al. [3] found that exhibited a heavy-tailed prop-
erty and could be fitted with the power-law distribution. At
present, a more comprehensive analysis of the properties
of Ethereum’s transaction network is lacking. Some com-
mon but insightful network metrics, such as degree distri-
bution and centralization, have not been involved in the ex-
isting research. Moreover, the significance and impact of
The Merge, as one of the Ethereum milestones, is still un-
known. Given how recent it is, there are few studies on this
event that explore and analyze the changes and influences it
brought from the perspective of the network.

In terms of predictive analysis, some representative stud-
ies include Rawya and Amal’s [5] machine learning ap-
proach for gas price prediction in Ethereum Blockchain. By
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Figure 1. Daily Transactions distribution in the second half of
2022.

using prophet model and deep learning models Long-Short
Term Memory model (LSTM) and Gated Recurrent Unit
model (GRU) with transaction data, to help users choose
an optimal gas price for an Ethereum transaction. However,
there is a lack of previous work predicting gas price through
graph-based methods, and few provide data analysis since
‘The Merge’.

Therefore, we believe that graph analysis and graph-
based prediction models of the Ethereum transaction graphs
before and after The Merge is of innovative and practical
significance.

3. Data
We collect transaction data from Ethereum open sources

such as Ethpool and Ethermine, and use Ethereum ETL
to manipulate and integrate our data into our database in
Google Cloud Platform. Among all data tables, we typi-
cally focus on transaction data, we use BigQuery to query
and download data within selected time range for descrip-
tion and prediction analysis. There are about 1.1 million
transactions generated each day, and we collected about
250 GB over the past few months. The data contains 21
fields, including the Ethereum block information, times-
tamps, transaction from address and to address, fungible
tokens (ERC20) and non-fungible tokens (ERC721), trans-
fers, etc. By plotting the correlation matrix, we can observe
that gas price affects a series of gas-related data and the
transaction result, while the value transacted is very cor-
related to from address and to address, implying different
clients having various magnitudes of transactions.

Then we apply simple Exploratory Data Analysis to the
Transaction Data in the second half of 2022, which contains
3 months of data before and after the Merge. In Fig 1, We
can observe that the transaction frequency is gradually drop-

ping in the past 6 months, but the reduction is insignificant
compared to the huge amount of transactions. Meanwhile,
the amplitude of transaction frequency is more obvious after
the Merge, and we can obverse larger outliers there.

4. Method

4.1. Descriptive Analysis: Transaction Graphs
Comparison

Network-structured data can reflect the interactions be-
tween individuals. In order to discover the changes brought
about by “The Merge” and interpret the significance of
those changes from the individual level, we choose to con-
struct two transaction networks, one before and one after
“The Merge,” and compare network metrics related to user
behavior in Ethereum.

The transaction networks are constructed based on two
months’ data, August and October, one month before and
one month after “The Merge.” We regard one month as a pe-
riod long enough to eliminate contingency and derive more
general patterns. According to the field ‘from address’ and
‘to address’ in the datasets, we construct two directed and
weighted graphs. Each edge represents the transaction rela-
tionship between two users. By aggregating features from
our data, we also track some attributes of the transaction
relationships, including the total transaction times, transac-
tion value, and minimum gas price between two users.

Based on the two networks, we compared metrics as fol-
lows: node degrees, edge attribute distributions, and graph
centralization, which measure the extent to which one or
more nodes occupy the central positions of a graph. For
node degrees and edge attribute distributions, we draw line
charts through the visualization tool d3.js to discern overall
patterns and changes. For graph centralization, due to com-
putational complexity reasons, we choose to compute de-
gree centralization among three types of centralization met-
rics.

Meanwhile, through d3.js, we conduct visualization of
two smaller subgraphs, where we can also gain general in-
sights in terms of the transaction structure on Ethereum.
The two subgraphs for d3.js visualization are obtained by
setting thresholds and filtering according to node degrees
and transaction times between nodes, since the entire graphs
are too large to be visualized.

The above methods respond to a question, that is, what
happened before and after “The Merge.” In addition, as a
web application, we also provide users with answers to an-
other question in this part, that is, what is happening now
and recently on Ethereum.

Here, every day, we obtain the transaction information
of the seven days before the current day with Airflow, in-
cluding total transaction times, transaction values, as well
as average and minimum gas prices. Through line charts

2



Table 1. Description of feature scales. The scales vary vastly.

drawn with d3.js, we present users with timely information
on transaction activities on Ethereum.

4.2. Predictive Analysis: Gas Price Prediction

4.2.1 Data Preprocessing

The first step is to aggregate transactions by time. The
number of transactions per block can vary dramatically,
ranging from 1 transaction to approximately 900 transac-
tions in one single block. The vastly changing size of blocks
presents challenges to accurately predicting the minimal gas
price in each block. However, the number of transactions
against time shows consistency. In practice, it is more im-
portant to consider the delay rather than the actual block.
Therefore, we aggregate the transactions by a non-overlap
sliding window with a length of 2 minutes. 2 and fig 3 com-
pare the distribution of transactions in each block and in a
time window of 2 minutes. Fig 2 are transactions count and
distribution in each block, fig 3 are transactions count and
distribution in a window of 2 minutes. What is observed is
that the number of transactions in a consecutive time win-
dow has better distribution over that in each block.

The second step is data normalization. The raw data we
collected has features on different scales. The gas price
and value are both in GWei, and since 1 GWei equals
0.00000000119 ETH, both features contain great values.
The value transferred on average is 6.76E+17 and the mean
of gas price is 1.78E+10, while the average of gas is
2.11E+5. Data normalization can be crucial to the model’s
performance. We used Z-score normalization for each fea-
ture separately. The third step is to label the data. For
each block, only transactions processed were recorded, so
that the minimum gas price in each block is the lowest gas
price for the transaction to be considered(in this block). Af-
ter aggregation and normalization, we compute the mini-
mum gas price mi within each graph i. Then we compute
yi = mink∈{i+1,i+2,...,i+l}) mk, which is the minimum of
consecutive minimum gas prices.

The last step is to mini-batch along the diagonal for con-
secutive graphs to create a giant graph. The data loader is
built on these giant graphs to preserve the order of sequence.

Figure 2. The upper is Number of transactions in each block over
time. The lower is Distribution of number of transactions in each
block.

Figure 3. The upper is Number of transactions in a time window
of 2 minutes. The lower is Distribution of number of transactions
in a time window of 2 minutes.

4.2.2 Modeling: Node2vec

Node2vec [2] learns low-dimensional representations for
nodes in a graph by optimizing a neighborhood preserving
objective using biased random walks. Given any graph, it
can learn continuous feature representations for the nodes,
which could then be applied on downstream tasks. The
transaction network of Ethereum lacks node features. Al-
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though we can generate statistic features, for instance,
in/out degree, pagerank, etc, or assign each address(node)
a trainable random vector, we finally decided to leverage
node2vec method to generate node embedding for the rea-
son that new addresses join the network frequently and a
great proportion of addresses appears within 10 times and
the majority appears only once. In such conditions, it is
infeasible to directly train a random vector without neigh-
borhood information.

4.2.3 Modeling: GAT

The Ethereum transaction network has rich edge fea-
tures, including value transferred between nodes, the gas
consumed during processing and gas price bid for the trans-
action. To process both the information of node and edge
features, we use GATv2 operator from [1] work, which im-
proves GAT [8] so that every node can attend to any other
node and thus fix the static attention problem.

x′
i = αi,iΘxi +

∑
j∈N (i)

αi,jΘxj , (1)

Where the edge features is represented as ei,j , and the at-
tention coefficient αi,j are computed as:

αi,j =
exp

(
a⊤LeakyReLU (Θ[xi ∥xj ∥ ei,j ])

)∑
k∈N (i)∪{i} exp (a

⊤LeakyReLU (Θ[xi ∥xk ∥ ei,k]))
.

(2)

4.2.4 Modeling: Casual Transformer

The last component of the proposed model is the Causal
Transformer, which applies the causal mask to the multi-
head self-attention module[7].
Let L be the size of an input sequence, the attention mech-
anism we use is the dot-product attention, which takes
Q,K, V ∈ RL×d as inputs and has the form shown in eq.3

Attention(Q,K, V ) = D̃−1ÃV,

A = exp (QKT /
√
d),

Ã = tril(A), D̃ = diag(Ã1L).

(3)

Q,K, V are interpreted as query, key and value and tril
computes the lower triangular of the given matrix.

Further, to stabilize the training procedure, the Layer-
Norm is moved into the residual block and before the atten-
tion mechanism[9]. Fig 4 is a visualization of the architec-
ture of the causal Transformer in the proposed model. The
node features are processed layer by layer. A fully con-
nected layer with tanh activation is applied for the Trans-
former’s output for the reason that the target is Z-score nor-
malized and could be negative.

Figure 4. One layer of causal Transformer.

Figure 5. The structure of proposed model.

4.2.5 Proposed model: ETHGT

We proposed a novel model named ETHGT, whose
structure is shown at fig 5. The model apples the same
Graph Attention Convolution Blocks for a consecutive of
graphs, the extracted features are passed through global
mean pooling to get the embedding for the transaction
graph. The embedding from each timestep is then fed to
causal Transformer. The output is a single float number
which represents the estimate lowest gas price in the next
serval minutes.

5. System Overview

Fig 6 is an overview of the proposed system. For de-
scriptive analysis of transaction networks, the sizes of the
two obtained datasets are 33.83 gigabytes (GB) and 32.91
gigabytes (GB), respectively. In order to process data and
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Figure 6. An overview of the system structure.

construct networks at that scale, we apply the GraphFrame
package in PySpark. GraphFrame inherits the functions of
GraphX and uses Spark DataFrame as its backend. There-
fore, it is capable of constructing and storing large-scale
graphs, which is in line with our goal for this part. Mean-
while, as mentioned above, Airflow is part of our system for
fetching timely transaction information.

Considering the huge amount of data, we decide to start
by picking some dates before and after the Merge, and com-
pare its key features such as transaction addresses for de-
scriptive analysis using Big Query. For predictive analysis,
we’ll first process the data with scikit-learn, which provides
rich features in data preprocessing. Then we leverage the
Pytorch geometric to build the Node2Vec model for node
embedding. The proposed predictive model is written in
Pytorch and with the help of Pytorch Lightning, the model
could scale up easily. Our model is optimized with Ray
Tune, which is capable of large-scale hyperparameter tun-
ing, and finally, we build web application with Flask for
data visualization.

6. Experiment
6.1. What Happened Before and After The Merge:

Comparative Analysis of Pre-Merge and Post-
Merge Graphs

After constructing the Pre- and Post-Merge graphs, we
conducted comparative analysis of the two graphs by com-
paring graph metrics of different levels, including individ-
ual metrics like in-/out-degrees and edge attribute distribu-
tions, and global metrics like degree centralization.

6.1.1 Individual Metrics

In terms of individual node metrics, we compared the
degree distribution of the Pre- and Post-Merge graphs.

Fig 7 plots the Cumulative Distribution Function (CDF)
of node degrees of the two graphs. Fig 8 plots the Cumula-

Figure 7. Cumulative Distribution Function (CDF) of Node De-
grees in Transaction Graphs (Log Scale).

Figure 8. Cumulative Distribution Function (CDF) of Users’
Transaction Times / Weighted Node Degrees (Log Scale).

tive Distribution Function (CDF) of the weighted node de-
grees, namely total transaction times of a user, of the two
graphs.

The two figures present a similar pattern. It can be seen
that at a rather small (weighted) degree, the Post-Merge red
lines are always below the Pre-Merge blue lines, which sug-
gests that the proportion of users who conduct few transac-
tions or conduct transactions with few users is shrinking.
Overall, users are more active in developing relationships
with other users in Ethereum after The Merge. In fact, the
average degree of nodes rose from 4.33 before The Merge
to 4.86 after The Merge, while the average transaction times
of users rose from 8.93 to 10.35.

In terms of individual edge metrics, we compared the
total transaction value and minimum gas price of the Pre-
and Post-Merge Graphs. Fig 9 and 10 plots the Cumulative
Distribution Function (CDF) of the total transaction value
and minimum gas price before and after The Merge.

In Fig 9, the red and blue lines are almost overlapping.
However, the Post-Merge red line is still slightly below the
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Figure 9. Cumulative Distribution Function (CDF) of Transaction
Values between Users (Log Scale).

Figure 10. Cumulative Distribution Function (CDF) of Minimum
Gas Price between Users (Log Scale).

Pre-Merge blue line at the beginning, indicating that after
The Merge, users are less likely to conduct transactions of
fewer values. The trend is verified by the decreased aver-
age transaction value from the Pre-Merge 4.730 to the Post-
Merge 4.851 (unit: Ether).

In Fig 10, it can be seen that at a low price, the Post-
Merge red line is below the Pre-Merge blue line, which sug-
gests that the proportion of transactions with low gas price
decreased after The Merge. The trend is verified by the in-
creased average gas price from the Pre-Merge 14.99 to the
Post-Merge 19.11 (unit: GWei). This indicates that after
The Merge, there may be a growing extra cost paid for ev-
ery transaction.

To sum up, the comparison of those individual-level net-
work metrics reveals a potential behavior shift of users.
Users now become more engaged in blockchain transac-
tions on Ethereum, developing relationships with users
more widely and frequently on the platform. Meanwhile,
the value of transactions between users is generally on the
rise. However, despite the rising figures of transaction times

and values, users are also paying much more extra money,
namely the rising gas price, to get engaged in transactions.

6.1.2 Global Metrics

In terms of global graph metrics, we compared the cen-
tralization of the Pre- and Post-Merge Graph. In network
science, centrality measures the positional property at the
node level, while centralization measures that at the graph
level. In specific, graph centralization measures the differ-
ence in node centrality and reflects the extent to which one
or more nodes occupy the central positions of the graph.

Here, we adopt degree centralization in our comparative
analysis, which indicates the difference in the degrees of
nodes. The smaller the value is, the more decentralized
the graph is, and vice versa. The computation formula for
degree centralization is as follows:

Cd =
∑

i c
d∗−cdi

max
∑

i c
d∗−cdi

=
∑

i c
d∗−cdi

(n−1)(n−2)

where cdi = degree centrality of node i,
cd∗ = maximum degree centrality of all nodes.

The computation result shows that degree centraliza-
tion exhibited a quite large extent of decrease after The
Merge. Degree centralization falls from the Pre-Merge
0.093 to the Post-Merge 0.076. This result indicates that
users of Ethereum did participate in transaction activities
more equally after The Merge, since a smaller proportion
of nodes occupy the central positions. The Merge, which
was intended to promote finance decentralization, may have
been successful in doing so.

6.1.3 Overall Graph Pattern

Through d3.js, we conduct visualization of two smaller
subgraphs of the original Pre- and Post-Merge graphs,
where we can discern patterns and gain insights in terms
of the overall transaction structure on Ethereum. The sub-
graphs are obtained through setting thresholds of at least 30
degree and at least 10 transaction times, and filtering the
original graphs.

Figure 11 and 12 shows that there is no significant
change in terms of the overall transaction structure on
Ethereum. The transaction graph is divided into several
components. Among them, the largest component will have
an obvious central node, and many other nodes around it
will develop transaction relationships with it. A possible
guess is that this node is an important financial institution,
who attracts many individual or organizational users to con-
duct transaction with it on Ethereum. In terms of the other
components of the graph, some have a center and present
a ”core-periphery” structure, while others are more decen-
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Figure 11. Visualization of the Pre-Merge Graph (Node size rep-
resents its transaction times).

Figure 12. Visualization of the Post-Merge Graph (Node size rep-
resents its transaction times).

tralized and every node enjoy quite equal status in the trans-
action structure.

6.2. What is Happening Now and Recently: Daily
Transaction Monitoring

As a web application, we also provide users with answers
to another question, what is happening now and recently on
Ethereum. With Airflow, we schedule a task per day. The
task is to obtain the transaction data of the week before the
current day, including the total transaction times, values, as
well as the average and minimum gas price of transactions
per day.

To be specific, we combine PySpark with Airflow to
complete the task of obtaining transaction data. Because
PySpark does not support multiple sessions, we encapsu-
late the task of obtaining and storing transaction data in one
single function in Airflow. The logic and execution flow

Table 2. Hyper parameter tuning range.

Table 3. Hyper parameter tuning range.

of this Airflow function are shown in Fig 13 as a directed
acyclic graph (DAG).

First, we fetch data from our dataset using BigQuery and
store it in BigQuery as well. Then, we process the data
to get edge and node data successively, and write them to
BigQuery. In the next step, we get a subgraph by setting
thresholds to filter nodes and edges in the original graph.
Further on, we carry out visualizations of distributions of
daily transaction times, total value, and gas price with line
charts in HTML. Finally, we store the visualization charts
to Google Cloud Storage bucket in HTML format.

The HTML files in GCS bucket can be connected to the
front-end of our system, showing users the transaction in-
formation as well as potential changes on Ethereum in the
recent week.
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Figure 13. The Execution Flow of the Airflow Function.

Figure 14. The workflow of training and tuning the proposed
model ETHGT.

6.3. What May Happen Next: Gas Price Prediction

Fig 14 is the visualization of our training and tuning
work flowx. We present the experiment result in this sec-
tion. We use population-based training(PBT)[4] scheduler
to efficiently search for best set-up. PBT trains and opti-
mises a series of networks at the same time, allowing the
optimal set-up to be quickly found. The parameter space is
shown at Table 2 and the best parameter we found is dis-
played at Table 3

To evaluate the performance of the proposed model, we
used Mean Square Error(MSE) MSE = 1

N

∑N
i=1(yi −

ŷi)
2. After 500 episodes, we observed that the train loss

curve fig 16 and validation loss curve fig 17 both drop as
the training continues. We apply the trained model to pre-
dict on the test dataset (fig 18), where we discovers that the

Figure 15. Population Based Training of neural networks starts like
random search, but allows workers to exploit the partial results of
other workers and explore new hyperparameters as training pro-
gresses.

Figure 16. Train loss curve of ETHGT.

predicted value is close to the real value and has the similar
trend as the real value. Therefore, the model can provide
informative gas price prediction for users.

7. Conclusion
In this project, we have conducted both descriptive and

predictive analysis of the transaction network on Ethereum,
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Figure 17. Val loss curve of ETHGT.

Figure 18. Prediction on the test dataset.

providing insights on what happened before and after ’The
Merge’, what is happening recently, and what may happen
next in terms of gas price, which is the key to a successful
transaction.

In terms of descriptive analysis, we carry out compar-
ative analysis on two months’ transaction graphs. Hav-
ing constructed graphs through PySpark, GraphFrames, and
BigQuery, we compare graph metrics including node de-
grees, edge attributes, and graph centralization. We reveal
that there may be a behavior shift for users. Users now be-
come more engaged in blockchain transactions after The
Merge on Ethereum, but they are also paying much more
extra money to get engaged in transactions.

Moreover, we adopt Airflow to schedule an everyday
task of obtaining the data and exhibiting the trends of trans-
actions in the recent week, helping users to monitor trans-
action information and make related decisions.

In terms of predictive analysis, we proposed the model

ETHGT for gas price prediction based on the transaction
graph through Ray and Torch. By leveraging the Ray Tune
PBT scheduler, we searched the best set-up on scale and
trained an efficient model to predict the lowest gas price in
the next 10 minutes, which realizes a MSE below 8e-5 and
thus is competitive with other models.
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